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Abstract 
The evolutionary theory relies on the principles of variation and 
selection to explain adaptation. It is reasonable to fit these 
powerful principles to the learning theory. A number of 
selectionist approaches were proposed but found modest 
recognition so far. This theoretical paper attempts to review an 
application of basic ideas of the evolutionary adaptation to the 
lifetime learning. The analysis demonstrates that an adaptive 
value can be translated from the level of evolution to the level 
of individual through the innate repertoire of behaviors. This 
primary repertoire forms initial attractor for the behavioral 
dynamics. Learning starts when an environment offsets an 
organism from the existing attractor trajectory. Blind variations 
of behavior are generated until the return to the target attractor. 
These variations are retained to make up new branches of basin 
of attraction. It is important that the existed behavioral 
trajectory should not be altered as the learning unfolds because 
it keeps knowledge about adaptations survived selection 
through the evolutionary and learning history. 

Introduction 
Animals learn and this learning is usually beneficial or at least 
neutral for their evolutionary success. Generally, an adaptive 
learning is considered to be driven by some value system. The 
value system categorizes states of an environment in terms of 
their adaptive value. This categorization results in the 
feedback used in modification of behavior during learning. 
Adoption of the value system to explain the adaptive value of 
learning is not an exclusive solution. This paper addresses an 
application of the evolutionary principles of variation and 
selection to the explanation of adaptive outcome of learning. 
In spite of a number of selectionist theories of learning being 
proposed (Skinner, 1981; Edelman, 1987; Changeux and 
Dehaene, 1989) none of them gained widespread recognition. 
Here I try to analyze and clarify some basic ideas behind the 
selectionist approach. In particular, I focus on the issues 
concerning the initiation and finalization of learning, the 
selection criteria for the behavioral modifications, and 
memory retention. 
 An explanation of learning adaptive value is the ultimate 
problem of learning theory. Learning is adaptive when it leads 
to the modification of behavior that is evolutionary beneficial. 
But natural selection operates on the scale of generations and 
learning unfolds on the interval of minutes or even seconds. 
The evolutionary values should be transferred to the level of 
learning. This transfer is maintained by Darwinian evolution 

of developmental processes. And when an organism starts 
learning it already has criteria of adaptivness created during 
ontogeny. 
 Having representations of evolutionary values on the 
organismic level is a half of the story. The other half is 
generation of new adaptive behaviors. During learning an 
individual should produce behaviors taking into account 
evolutionary values. A mainstream of modern theories of 
animal learning in the fields of neuroscience (Schultz and 
Dickinson, 2000; Suri et al., 2001; Dayan and Balleine, 2002; 
Berridge and Robinson, 2003) and adaptive behavior (Maes, 
1994; Sutton and Barto, 1998; Dorigo and Colombetti, 1998; 
Adaptive Behavior, 2002) employs “feedback” logic for 
aligning behavior with values. In this logic, discrepancy in the 
expected value guides learning. The value of an error signal is 
used to produce modifications of behavior. 
 An alternative approach to the generation of adaptation is 
presented by the explanatory scheme of the evolutionary 
theory. Evolution requires two processes, the first is 
generation of variation and the second is selection. The logic 
of the evolutionary explanatory scheme is opposite to the 
“feedback” logic mentioned above. In the “feedback” logic 
the adaptivness is evaluated first in terms of “reward” 
expectation mismatch and then the obtained error signal is 
used to change behavior. On the other hand, in the 
evolutionary scheme the generation of possible solutions goes 
first and then evaluation takes place in the form of selection. 
This reversal of stages leads to the next important distinction. 
The process of variation generation precedes the evaluation so 
it is independent of selection criteria, but in the “feedback” 
approach modifications depend on evaluations. The 
differences are outlined in the table 1. 
 

“feedback” logic evolutionary logic 
evaluation then modification generation then selection 

modification depends on 
evaluation 

generation is 
independent of selection 

Table 1: The differences between “feedback” and 
“evolutionary” logic of adaptation. 

 It is obvious that the evolutionary logic of adaptation was 
successfully applied in a numerous studies to the synthesis of 
adaptive agents (Beer, 1996; Harvey et al., 1997; Pfeifer and 
Scheier, 1999; Nolfi and Floreano, 2000; Beer, 2000; Harvey 
et al., 2005) but its application to the problem of individual 
learning is still on the way. 



 There are a number of attempts to use principles of 
variation and selection in the theories of learning. In 1960 W. 
Ross Ashby published his influential book “Design for a 
brain” (Ashby, 1960) where one can find a proposal of the 
cybernetic theory of learning that utilizes trials and errors. 
Ashby had introduced so called essential variables (variables 
indicating viability of an organism) and treated them as a 
source of control for the blind variation. “Design for a brain” 
is focused mainly on the issue of behavior’s stability. Here the 
important achievement was that adaptation in one behavioral 
subsystem should not disturb other subsystems of an animal 
and, hence, the subsystems for different behaviors should be 
loosely connected. Recently the similar idea of the structural 
adaptation was studied by Toussaint (Toussaint, 2004). 
Unfortunately, Ashby said nothing on retention of previous 
experience of an agent, and in his scheme of learning only the 
last successful adaptation is conserved. Therefore, each new 
learning episode should start from scratch and this would lead 
to the repetition of previous errors and make learning less 
effective. Also, Ashby allowed only a fixed set of essential 
variables to control blind variations. 
 On the conceptual level the evolutionary approach to 
learning lies at the intersection of evolutionary epistemology 
(Campbell, 1974; Popper, 1984) and constructivism 
(Glasersfeld, 1995; Foundations of Science, 2001). The 
famous Popperian formula describing the growth of 
knowledge through variation and selection is: 

1 2P TT EE P→ → → , (1)

here P1 stands for the initial problem, TT are tentative theories 
or solutions proposed to solve it, EE is a process of error 
elimination, and P2 is a new problem. For the sequential 
scheme of generation of solutions formula is extended and 
takes form: 

1 1 1 2 2 ... nP TT EE TT EE TT success→ → → → → → , (2) 

here n is a number of attempts which an agent has performed 
until solution was obtained. 
 An important contribution of the evolutionary epistemology 
is a concept of “vicarious selector” (Campbell, 1974). 
Vicarious selectors serve as internal representations of 
external factors of natural selection thus allowing transfer of 
evolutionary values to the level of learning. Vicarious 
selection “substitutes” natural selection during lifetime 
learning. The hierarchy of vicarious selectors accumulates all 
previous (even unsuccessful) experience and, as a 
consequence, generation of new behaviors takes the form of 
progressive growth on the top of existing competence. This 
process can be interpreted as a construction of individual 
knowledge by an active agent. 
 B.F. Skinner advocated his theory of “selection by 
consequences” (Skinner, 1981). Skinner considered selection 
by consequences as an explanatory scheme that is common for 
the three different levels, namely, the Darwinian evolution, 
learning and social evolution. Unfortunately, radical rejection 
of any attempts to consider the processes underling selection 
for all these cases made his approach fruitless. 
 There are two selectionist theories in the field of 
neuroscience: the theory developed by Changeux and 

Dehaene (Changeux and Dehaene, 1989), and the theory of 
neuronal groups selection (TNGS) proposed by Edelman 
(Edelman, 1987, 1993). Both theories declare thoroughly 
application of the “neural Darwinism” to the processes on all 
levels of brain organization from the synapse to the 
consciousness. The suggested sources of variation are 
generation of excessive synaptic connections during 
development and variable activation of neural assemblies. In 
their basic form both theories attributes selection to the input 
matching: 

“At a given stage of the evolution of the organism, some 
of these spontaneously generated pre-representations 
may not match any defined feature of the environment 
(or any item from long-term memory stores) and may 
thus be transiently meaningless. But, some of them will 
ultimately be selected in novel situations, thus becoming 
“meaning full”. The achievement of such adequacy 
(fitness) with the environment (or with a given cognitive 
state) would then become the basic criterion for 
selection.” (Changeux and Dehaene, 1989, p. 87) 

The similar idea for the TNGS is presented in (Izhikevich et 
al., 2004). But input matching only is not enough for the 
creation of adaptive behavior because the action selection 
process should also be specified. The solution to this problem 
was put forward in (Dehaene and Changeux, 2000): 

“The models that we have introduced thus implement a 
generalized variation/selection scheme which was 
initially explored under the name of ‘reinforcement 
learning’ by computer scientists (e.g. Sutton and Barto, 
1998) and has also been called 'neural Darwinism’ by 
neurobiologists (Edelman, 1987, 1993; Changeux and 
Dehaene, 1989).” 

This solution creates confusion because “generalized 
variation/selection scheme” refers to the evolutionary 
explanatory scheme but used by authors as a shortcut to the 
principles primary to reinforcement learning. The mechanisms 
of adaptation in the reinforcement learning fall in the domain 
of “feedback” logic which is opposite to the evolutionary one 
(see Table 1). 
 An integration of theoretical proposals devoted to 
application of the evolutionary principles to learning gives 
only some features of the required picture. Below an attempt 
to analyze the process of individual learning in the framework 
of evolutionary logic is presented and some consequences are 
discussed in relation to the current theoretical landscape. 

Formalization 
Below an organism or a robot is considered as an abstract 
adaptive agent. The agent’s “brain” can be represented as an 
automaton A (similar approach was used by Peschl (Peschl, 
1997) in his investigation of representations in neural 
systems). Description of the automaton A should include 
definitions of a set of all the components C of A and a 
transformation of these components states B that generates the 
“brain” dynamics. 
 The set of components C of the brain-automaton A consists 
of the following subsets (fig. 1): 



• CE is a subset of the components which states are 
determined by the external environment. 
• CI is a subset of components which states are determined 
by the internal state of the agent (its body). 
• CS is a subset of components which states are not 
determined directly by the external environment or the 
internal state of the agent but determined by any other 
components of the set C. 
• CA is a subset of components which states determine the 
actions executed by the agent.  

 Hence a “brain” of an agent is specified by the automaton 
A{CE,CI,CS,CA,B}. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1: The automaton representation of the agent’s “brain” 
(for details see text). 
 
 With the use of notation introduced above a behavior of the 
agent in discreet time t{t0,t1,t2,…,tn} is represented as 
modification of it’s states by transformation B and can be 
written like this: 

1 2... ...n n nt t tB B B+ +⎯⎯→ ⎯⎯→ ⎯⎯→C C C  (3)

or equivalently 

1 ( ) ( , , , )n n n n n nt t t t t tB B+ = = E I S AC C C C C C , (4)

here ntC  is a vector of states of the automaton’s components 
at the time tn, or in other words the state of A at tn. 
 The behavior of the agent is constant if the transformation 
B doesn’t change with time. It should be mentioned that 
according to the equation (4) constancy of behavior is not 
necessary leads to the same actions in the same environmental 
and bodily conditions because the next state of the automaton 
also depends on the states of its internal components CS. It is 
reasonable to define learning as a transformation L of the 
brain dynamics B of the agent. Thus L is a transformation 
defined on the set of possible B’s. To introduce learning into 
the dynamics the both B and L are applied: 

1
1( ) ( )... ...

n n
n n

t tt tL B L B +
+⎯⎯⎯→ ⎯⎯⎯→C C , (5) 
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 Addition of the learning transformation L to the automaton 
A results in an automaton with learning A{CE,CI,CS,CA,B,L}. 

“Feedback” logic of learning 
The common assumption about logic of learning is that 
change in the function which generates a behavior (i.e. B) is 
determined by the states of the agent’s “brain”. These states 
can be external reinforcing stimuli which the agent percepts 
through the activation of some sensory inputs (i.e. CE), or the 
signals carrying information about the state of the body (i.e. 
CI), or the activations of pre- and post-synaptic neurons (i.e. 
CS) in the activity-dependent plasticity. In the framework of 
automata approach accepted in the paper this means that the 
transformation L is a function of values of states C: 

( , , , )L f= E I S AC C C C . (7)

In other words, the transformation from ntB  to 1ntB +  is 

determined by the state ntC  of the automaton A. 

Evolutionary logic of learning 
Following the evolutionary logic the adaptation is produced 
by variation and selection where generation of variation is 
independent of selection. One can start with the most radical 
assumption that a change in the function which generates 
behavior (i.e. transformation B) is not determined by the states 
of the agent’s “brain”. The simplest form of the learning 
transformation L in this case: 

1 ( )n n nt t tB L B B ξ+ = = ⊗ , (8)

where ξ is a random process (noise) and ⊗ denotes acting 
upon B. 
 It is obvious that the learning transformation L in the form 
of (8) leads not to adaptation but to degradation of the 
behavior. If we look at (8) as on applying a mutation (⊗ξ) to 
the strategy of agent’s behavior (B) it becomes clear that an 
analog of natural selection is needed to make the process 
adaptive. 
 The natural selection acts on variation in a population of 
individuals. The key difference of the individual learning from 
the evolution is that in the former the agent cannot evaluate 
more than one of the different variants of behavior at the same 
time. The solution is that during the individual learning 
selection acts not on the variation in the population of 
behaviors but on the sequence of varying behaviors. Thus the 
rule of individual evolutionary learning is: 
“Produce blind variations of the behavior until adaptation is 
obtained.” 
 Here selection is implemented as a control of blind 
variation. The next question, what does control variation, or 
who does evaluate produced behaviors? It is naturally to 

A{CE,CI,CS,CA,B} 

CE 

CI CS 

CA 

Environment 

Body 

Actions



assume that evaluation of the behavior is performed by the 
agent itself. Then (8) becomes: 

1 ( ) ( )n n nt t tB L B B m ξ+ = = ⊗ C , (9)

where m is a magnitude of application of ξ to B. The value of 
m is determined by the state of the “brain” C. 
 The logic of learning expressed in (9) can be summarized 
as follows: 
1. The process of change in the behavioral strategy of the 
agent (learning) is not determined by the state of the agent’s 
“brain” and has a form of blind variation of already existed 
behavior. 
2. Amount of change through blind variation is not constant in 
time and is determined by the state of the agent’s “brain”. 

Discussion 
The formalization of learning as an evolutionary process 
presented in the previous section gives only general 
framework and it is insufficient for the modeling of animal 
learning or implementation of any learning algorithms for 
animats. 
 In the selectionist theories of learning the picture of 
generation of variation in the behavior seems to be 
straightforward. It is easily described and related to a number 
of mechanisms on the neuronal level such as a probabilistic 
pattern of connections formed during the development and 
spontaneous excitations of cells or assemblies. An 
understanding of the selection processes in the brain is a 
challenge. 
 Consider the evolution of a population consisting of agents 
equipped with A “brains”. The brain A is a dynamical system 
and its dynamics can be represented as a trajectory in the 
phase space of possible values of the components C. This 
trajectory determines a sequential unfolding of the agent’s 
behavior (eq. (4)). When a new born agent has some innate 
behavior this behavior is represented by a primary repertoire 
of the trajectories. In the course of evolution the agents with 
adaptive sequences of actions will be selected. Hence, these 
innate trajectories represent the evolutionary beneficial or at 
least “safe” (neutral in respect to the natural selection) 
sequences of agent-environment interactions. Moreover, the 
set of innate trajectories is the only source of adaptive values 
for the learning process. For the behavior being adaptive these 
trajectories should define the target dynamical attractor. Then 
the goal of learning is creation of a basin of attraction for it. If 
the point in C which corresponds to the current state of the 
agent’s “brain” A moves along the trajectory which is already 
“approved” by selection then no modification of the behavior 
(of the transformation B) is needed and m(C) = 0 in eq. (9). 
But movement along the target trajectory might be disturbed. 
For example, instead of a “normal” transition 

1 1 1 1...{ { ..., , , } , , , }n n n n n n n nt t t t t t t tB + + + +⎯⎯→E I S A E I S AC C C C C C C C  

which should result in the environmental feedback 1nt +

EC  the 
agent’s “brain” might receive an “unexpected” reaction from 

the external world 1nt +

EC' . If the “unexpected” state of the 

“brain” 1 1 1 1{ , , , }n n n nt t t t+ + + +

E I S AC' C C C  is not lying at any part of 
the “safe” target trajectory then adaptation is required. To start 
learning the magnitude of blind variation m(C) should become 
positive to allow generation of behavioral variations. During 
learning a new part of the trajectory is creating which departs 

from the “unexpected” state 1 1 1 1{ , , , }n n n nt t t t+ + + +

E I S AC' C C C . The 
process of learning ends up (m(C) = 0) when “approved” 
trajectory is reached. When after learning the agent’s “brain” 
will sometime fall again into the state which is equivalent to 

1 1 1 1{ , , , }n n n nt t t t+ + + +

E I S AC' C C C  it will already have a trajectory to 
follow and no additional modifications of the behavior will be 
necessary. 
 Now, the selection criteria for the learning as evolution can 
be summarized as: 
“The sequences of the agent-environment interactions that 
lead to the target trajectory should be retained”. 
 The primary repertoire of trajectories of the agent extends 
only to a limited fraction of possible dimensions of the phase 
space. Initially only deviations along these dimensions evoke 
the learning process and variations in all other dimensions are 
“don’t matter”. A new branches added to the initial target 
trajectory by lifetime learning extend it to a new dimensions 
forming a secondary repertoire. Then deviations in both the 
primary and the secondary repertoires are used for the 
learning initiation and finalization. 
 The innate and learned behavioral trajectories are an 
adaptive knowledge gathered trial by trial during the 
evolutionary and individual history; hence, losing them is 
losing evolutionary advantage. This raises a requirement to 
the process of learning, namely, that the growth of the new 
branches of the attractor should not change the existing traces. 
 This “behavioral trajectory” analysis brings some 
conceptual extensions in comparison to the other selectionist 
approaches to the learning as evolution. 
 Control of learning by deviation from the target behavioral 
trajectory is similar to the homeostatic adaptation controlled 
by essential variables suggested by Ashby (Ashby, 1960). 
However, the homeostatic control has no mechanism for the 
retaining of knowledge gained during the learning through 
trials and errors, when the same deviation of the essential 
variables occurs next time the procedure of adaptation should 
be repeated again. Thus, Ashbian theory addresses the 
question of sustainability of behavior but not of its adaptive 
modification. 
 Discussing the work of Ashby Di Paolo (Di Paolo, 2003) 
suggested a hypothesis that is very close to the “behavioral 
trajectory” scheme: 

“Habits, as self-sustaining dynamic structures, underly 
the generation of behaviour and so it is them that are 
challenged when behaviour is perturbed. An interesting 
hypothesis is that often when adaptation occurs in the 
animal world this is not because organismic survival is 
challenged directly but because the circular process 
generating a habit is.” (Di Paolo, 2003, p.31) 



 In relation to the general conceptual framework of the 
evolutionary epistemology (Campbell, 1974; Popper, 1984) 
the scheme proposed in this paper contains the next level of 
details. Recognition of the divergence from the target 
trajectory allows the agent to detect the problem situation. 
New behavioral trajectories sinking into the target attractor are 
retained, so the behavioral attractor plays the role of vicarious 
selector. 
 The selection of behavioral sequences toward attractor 
seems, on the first sight, to be similar to the match/mismatch 
selection of the neural Darwinism theories (Edelman, 1987, 
1993; Changeux and Dehaene, 1989). When the agent 
encounters an unexpected situation it detects mismatch 
between perception and internal state. According to the neural 
selectionism the internal state is transformed to match the 
input. No action upon the environment is needed, neuronal 
dynamics only is sufficient to do that. Contrary, in the 
trajectory paradigm the internal state is a valuable knowledge 
which is kept intact and actions performed to change the 
situation, i.e. the input toward target values. 
 The analysis presented in this paper deals with the 
phenomenological level of description of behavior and 
learning. At the next level, the issue of cellular mechanisms 
compatible with the evolutionary scheme of learning should 
be addressed. The rules of cells interactions should allow 
detection of the deviations from the target behavioral attractor 
and creation of new neuronal functional systems while 
preserving existed ones. 

Summary 
The theory of learning should have an explanation why 
learning normally results in evolutionary adaptive 
modifications. The common explanatory scheme for the 
adaptivness of learning is based on the “feedback” logic. In 
this scheme the reward system of an organism or an agent 
evolves by the natural selection to effectively evaluate stimuli 
in terms of their expected contribution to the evolutionary 
success. The error between predicted and received reward is 
used as a “feedback” signal for correction of the behavior. 
 Variation and selection principle provides an alternative 
and opposite explanation to the “feedback” logic (see Table 
1). Applied to the lifetime learning it assumes that at the first 
new behavioral variants are produced and then selected to 
meet evolutionary demands. 
 A number of approaches to utilize the evolutionary logic 
for the explanation of learning were proposed but the theory is 
still not satisfactorily. An attempt to clarify and extend the 
basic ideas underlying these approaches presented in this 
paper resulted in the following contributions: 
• The innate behavior shaped by natural selection brings 

evolutionary values to the level of learning. This innate 
behavior constitutes an initial target trajectory of the agent-
environment interactions. 

• The generation(variation)/selection cycle of learning starts 
from the critical deviation from the existing behavioral 
trajectory and stops when deviation is eliminated. 

• During learning new behaviors are created by blind 
variations. The behaviors leading to the target trajectory 
are selected. 

• New branches of the behavioral trajectory produced by 
learning are included in the target set and start to play the 
role in controlling generation(variation)/selection cycle. 

• The existed behavioral trajectory should not be altered as 
the learning unfolds. It keeps knowledge about adaptations 
survived selection through the evolutionary and learning 
history. 
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